EFFECT OF HIGH-TEMPERATURE REDUCTION ON AMMONIA DECOMPOSITION OVER NIOBIA-SUPPORTED AND NIOBIA-PROMOTED RHODIUM CATALYSTS

A. MAEDA, Z. HU, K. KUNIMORI * and T. UCHIJIMA *

Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Received 5 April 1988

The high-temperature reduction at 773 K (HTR) of both Rh/Nb₂O₅ and Nb₂O₅//Rh/SiO₂ catalysts caused severe suppression in the capacity of $\rm H_2$ chemisorption (SMSI behavior). However, in contrast to the case of hydrogenolysis reactions, the HTR caused only a small change in the activity of NH₃ decomposition, which is, like hydrogenolysis, a structure sensitive reaction. SMSI was not reversed during the reaction, as revealed by in situ $\rm H_2$ chemisorption study.

In the studies of the effects of reduction temperature on the catalytic activities (e.g., Rh/TiO₂ [1], Rh/Nb₂O₅ [2]), it has been shown that the high-temperature reduction at 773 K (HTR) caused a strong activity suppression, i.e., several orders of magnitude, for ethane hydrogenolysis reaction but only a modest suppression for cyclohexane dehydrogenation reaction. It is thus recognized that SMSI (defined as a reversible effect on chemisorption capacity or catalytic activity induced by HTR) has a great influence on structure sensitive reactions but only a minor effect on structure insensitive reactions. The decomposition of NH₃ is generally considered to be a structure sensitive reaction [3]. This paper first reports the effect of SMSI on the activity of NH₃ decomposition over both Nb₂O₅-supported and Nb₂O₅-promoted Rh catalysts (Rh/Nb₂O₅ and Nb₂O₅//Rh/SiO₂) [2,4].

The 5.0 wt% Rh/Nb₂O₅ catalyst was prepared by the incipient wetness technique followed by reduction in H_2 at 773 K [2]. The Nb₂O₅-promoted 0.5 wt% Rh/SiO₂ catalyst (atomic ratio of Nb/Rh = 11.4) was prepared by the same method as in ref. [4]. The NH₃ decomposition reaction was carried out in a closed circulating system (2.5% NH₃/He, 760 Torr). The chemisorption value (H/Rh) was measured in situ at room temperature before and after the reaction. Analysis was performed by an on-line gas chromatograph. The catalysts were treated in O₂ at 673 K for 1 h followed by H₂ reduction for 1 h at 373 K (LTR) or 773 K (HTR) before each activity measurement.

^{*} To whom correspondence should be sent.

Table 1				
The NH ₃	decomposition	on	Rh	catalysts

Catalyst	Treatment	H/Rh ^a	Rate b	
		before	after	at 602 K
Rh/Nb ₂ O ₅	LTR	0.15	_	0.31
	HTR	0.00	0.01	0.08
Nb ₂ O ₅ //Rh/SiO ₂	LTR	0.16	0.12	0.66
	HTR	0.03	0.03	0.64

^a The H₂ chemisorption was measured before and after the reaction (for 1 h) followed by the evacuation in vacuo at 723 K.

Table 1 shows the in situ H₂ chemisorption data and the catalytic activities of the Rh/Nb₂O₅ and Nb₂O₅//Rh/SiO₂ catalysts. The suppression of the H₂ chemisorption capacity after HTR was observed for both catalysts. It should be noted that the H/Rh values were reversed if the catalysts were treated in O₂ at 673 K followed by the low-temperature reduction at 373 K (LTR). As shown in table 1, the activity of NH₃ decomposition on the Nb₂O₅//Rh/SiO₂ catalyst did not change between LTR and HTR. For the Rh/Nb₂O₅ catalyst, the HTR caused only a modest suppression (a factor of 4) in the activity. These results are in contrast with those from the ethane hydrogenolysis studies: the catalytic activity after HTR decreased by about 6 or 7 orders of magnitude, compared with LTR for both catalyst system [2,4].

Another independent study by a pulsed reaction system also showed that the HTR caused only a minor change in the activity of NH₃ decomposition [5]. The activation energy appeared to be almost constant (ca. 20 kcal/mol) between LTR and HTR. These results are in good agreement with those on a Rh/TiO₂ catalyst [6]. Haller et al. [6] also reported that this reaction on Rh/TiO₂ was not affected by HTR, and discussed a possibility that SMSI was reversed by the reactant NH₃ during the reaction. However, the H/Rh values after the reaction (see table 1) did not change significantly, which indicates that SMSI was not broken during the reaction on the Nb₂O₅-supported and Nb₂O₅-promoted Rh catalysts. Therefore, it became evident that the T.O.F. values, based on the H/Rh values after HTR, were much higher than those after LTR. In a current model of SMSI, the presence of an oxide species (TiO_x, NbO_x etc.) on the metal surface is responsible for the suppression of the H₂ chemisorption capacity after HTR (the decoration model) [1,2]. The relevance of the metal surface structure to the enhanced activity should be further investigated in both Rh/Nb₂O₅ and Nb₂O₅//Rh/SiO₂ catalyst systems.

In summary, although the NH₃ decomposition is one of "demanding" reactions [3], the observed SMSI behavior in the activity was quite different from those of the hydrocarbon hydrogenolysis reactions [1,2].

^b Molecules converted per total Rh atoms per h.

Acknowledgement

One of the authors (Z. Hu) gives his thanks to Tianjin University, China. This work was supported in part by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (No. 62540316, No. 62550575).

References

- [1] D.E. Resasco and G.L. Haller, J. Catal. 82 (1983) 279.
- [2] K. Kunimori, K. Ito, K. Iwai and T. Uchijima, Chem. Lett. (1986) 573.
- [3] R.P.H. Gasser, An Introduction to Chemisorption and Catalysis by Metals (Clarendon Press, Oxford, 1986) p. 185.
- [4] K. Kunimori, Y. Doi, K. Ito and T. Uchijima, J. Chem. Soc., Chem. Commun. (1986) 965.
- [5] A. Maeda, K. Kunimori and T. Uchijima, to be published.
- [6] G.L. Haller, V.E. Henrich, M. McMillan, D.E. Resasco, H.R. Sadeghi and S. Sakellson, Proc. of the 8th Int. Congr. Catal., Vol. V (1984) p. 135.